Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Analysis of Jeans instability from the Boltzmann equation (1508.07324v2)

Published 28 Aug 2015 in astro-ph.CO and cond-mat.stat-mech

Abstract: The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. Two cases are analyzed: a system with baryonic and dark matter in a static universe and a single system in an expanding universe. The amplitudes of the perturbed distribution functions are considered as a linear combination of the collision invariants of the Boltzmann equation. For the system of baryonic and dark matter, the Jeans mass of the combined system is smaller than the one of the single system indicating that a smaller mass is needed to initiate the collapse. For the single system in an expanding universe it is not necessary to make use of Jeans "swindle"and it shown that for small wavelengths the density contrast oscillates while for large wavelengths it grows with time and the Jeans instability emerges.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)