An efficient variational principle for the direct optimization of excited states (1508.06683v2)
Abstract: We present a variational function that targets excited states directly based on their position in the energy spectrum, along with a Monte Carlo method for its evaluation and minimization whose cost scales polynomially for a wide class of approximate wave functions. Being compatible with both real and Fock space and open and periodic boundary conditions, the method has the potential to impact many areas of chemistry, physics, and materials science. Initial tests on doubly excited states show that using this method, the Hilbert space Jastrow antisymmetric geminal power ansatz can deliver order-of-magnitude improvements in accuracy relative to equation of motion coupled cluster theory, while a very modest real space multi-Slater Jastrow expansion can achieve accuracies within 0.1 eV of the best theoretical benchmarks for the carbon dimer.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.