Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Jump activity estimation for pure-jump semimartingales via self-normalized statistics (1508.04216v1)

Published 18 Aug 2015 in math.ST and stat.TH

Abstract: We derive a nonparametric estimator of the jump-activity index $\beta$ of a "locally-stable" pure-jump It^{o} semimartingale from discrete observations of the process on a fixed time interval with mesh of the observation grid shrinking to zero. The estimator is based on the empirical characteristic function of the increments of the process scaled by local power variations formed from blocks of increments spanning shrinking time intervals preceding the increments to be scaled. The scaling serves two purposes: (1) it controls for the time variation in the jump compensator around zero, and (2) it ensures self-normalization, that is, that the limit of the characteristic function-based estimator converges to a nondegenerate limit which depends only on $\beta$. The proposed estimator leads to nontrivial efficiency gains over existing estimators based on power variations. In the L\'{e}vy case, the asymptotic variance decreases multiple times for higher values of $\beta$. The limiting asymptotic variance of the proposed estimator, unlike that of the existing power variation based estimators, is constant. This leads to further efficiency gains in the case when the characteristics of the semimartingale are stochastic. Finally, in the limiting case of $\beta=2$, which corresponds to jump-diffusion, our estimator of $\beta$ can achieve a faster rate than existing estimators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.