Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Determining the first order perturbation of a polyharmonic operator on admissible manifolds (1508.03706v1)

Published 15 Aug 2015 in math.AP

Abstract: We consider the inverse boundary value problem for the first order perturbation of the polyharmonic operator $\mathcal L_{g,X,q}$, with $X$ being a $W{1,\infty}$ vector field and $q$ being an $L\infty$ function on compact Riemannian manifolds with boundary which are conformally embedded in a product of the Euclidean line and a simple manifold. We show that the knowledge of the Dirichlet-to-Neumann determines $X$ and $q$ uniquely. The method is based on the construction of complex geometrical optics solutions using the Carleman estimate for the Laplace-Beltrami operator due to Dos Santos Ferreira, Kenig, Salo and Uhlmann. Notice that the corresponding uniqueness result does not hold for the first order perturbation of the Laplace-Beltrami operator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube