Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Gorenstein homological aspects of monomorphism categories via Morita rings (1508.02843v2)

Published 12 Aug 2015 in math.RT, math.CT, and math.RA

Abstract: For any ring R the category of monomorphisms is a full subcategory of the morphsim category over R, where the latter is equivalent to the module category of the triangular matrix ring with entries the ring R. In this work, we consider the monomorphism category as a full subcategory of the module category over the Morita ring with all entries the ring R and zero bimodule homomorphisms. This approach provides an interesting link between Morita rings and monomorphism categories. The aim of this paper is two-fold. First, we construct Gorenstein-projective modules over Morita rings with zero bimodule homomorphisms and we provide sufficient conditions for such rings to be Gorenstein Artin algebras. This is the first part of our work which is strongly connected with monomorphism categories. In the second part, we investigate monomorphisms where the domain has finite projective dimension. In particular, we show that the latter category is a Gorenstein subcategory of the monomorphism category over a Gorenstein algebra. Finally, we consider the category of coherent functors over the stable category of this Gorenstein subcategory and show that it carries a structure of a Gorenstein abelian category.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.