Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Weighted False Discovery Rate Control in Large-Scale Multiple Testing (1508.01605v2)

Published 7 Aug 2015 in stat.ME

Abstract: The use of weights provides an effective strategy to incorporate prior domain knowledge in large-scale inference. This paper studies weighted multiple testing in a decision-theoretic framework. We develop oracle and data-driven procedures that aim to maximize the expected number of true positives subject to a constraint on the weighted false discovery rate. The asymptotic validity and optimality of the proposed methods are established. The results demonstrate that incorporating informative domain knowledge enhances the interpretability of results and precision of inference. Simulation studies show that the proposed method controls the error rate at the nominal level, and the gain in power over existing methods is substantial in many settings. An application to genome-wide association study is discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.