Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A density problem for Sobolev spaces on planar domains (1508.01400v1)

Published 6 Aug 2015 in math.CA, math.AP, math.CV, and math.FA

Abstract: We prove that for a bounded simply connected domain $\Omega\subset \mathbb R2$, the Sobolev space $W{1,\,\infty}(\Omega)$ is dense in $W{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover, we show that if $\Omega$ is Jordan, then $C{\infty}(\mathbb R2)$ is dense in $W{1,\,p}(\Omega)$ for $1\le p<\infty$.

Summary

We haven't generated a summary for this paper yet.