Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A density problem for Sobolev spaces on Gromov hyperbolic domains (1605.08260v1)

Published 26 May 2016 in math.FA

Abstract: We prove that for a bounded domain $\Omega\subset \mathbb Rn$ which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when $\Omega$ is a finitely connected planar domain, the Sobolev space $W{1,\,\infty}(\Omega)$ is dense in $W{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover if $\Omega$ is also Jordan or quasiconvex, then $C{\infty}(\mathbb Rn)$ is dense in $W{1,\,p}(\Omega)$ for $1\le p<\infty$.

Summary

We haven't generated a summary for this paper yet.