Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient (1508.00346v1)

Published 3 Aug 2015 in math.NA

Abstract: This paper addresses a multi-scale finite element method for second order linear elliptic equations with arbitrarily rough coefficient. We propose a local oversampling method to construct basis functions that have optimal local approximation property. Our methodology is based on the compactness of the solution operator restricted on local regions of the spatial domain, and does not depend on any scale-separation or periodicity assumption of the coefficient. We focus on a special type of basis functions that are harmonic on each element and have optimal approximation property. We first reduce our problem to approximating the trace of the solution space on each edge of the underlying mesh, and then achieve this goal through the singular value decomposition of an oversampling operator. Rigorous error estimates can be obtained through thresholding in constructing the basis functions. Numerical results for several problems with multiple spatial scales and high contrast inclusions are presented to demonstrate the compactness of the local solution space and the capacity of our method in identifying and exploiting this compact structure to achieve computational savings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube