Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 146 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps (1507.08191v11)

Published 29 Jul 2015 in math.DS

Abstract: We consider transformations preserving a contracting foliation, such that the associated quotient map satisfies a Lasota-Yorke inequality. We prove that the associated transfer operator, acting on suitable normed spaces, has a spectral gap (on which we have quantitative estimation). As an application we consider Lorenz-like two dimensional maps (piecewise hyperbolic with unbounded contraction and expansion rate): we prove that those systems have a spectral gap and we show a quantitative estimate for their statistical stability. Under deterministic perturbations of the system of size $\delta$, the physical measure varies continuously, with a modulus of continuity $O(\delta \log \delta )$, which is asymptotically optimal for this kind of piecewise smooth maps.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.