Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhancements of nonparametric generalized likelihood ratio test: Bias-correction and dimension reduction (1507.06090v1)

Published 22 Jul 2015 in stat.ME

Abstract: Nonparametric generalized likelihood ratio test is popularly used for model checking for regressions. However, there are two issues that may be the barriers for its powerfulness. First, the bias term in its liming null distribution causes the test not to well control type I error and thus Monte Carlo approximation for critical value determination is required. Second, it severely suffers from the curse of dimensionality due to the use of multivariate nonparametric function estimation. The purpose of this paper is thus two-fold: a bias-correction is suggested to this test and a dimension reduction-based model-adaptive enhancement is recommended to promote the power performance. The proposed test still possesses the Wilks phenomenon, and the test statistic can converge to its limit at a much faster rate and is much more sensitive to alternative models than the original nonparametric generalized likelihood ratio test as if the dimension of covariates were one. Simulation studies are conducted to evaluate the finite sample performance and to compare with other popularly used tests. A real data analysis is conducted for illustration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.