Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

On Bayesian Oracle Properties (1507.05723v2)

Published 21 Jul 2015 in math.ST and stat.TH

Abstract: When model uncertainty is handled by Bayesian model averaging (BMA) or Bayesian model selection (BMS), the posterior distribution possesses a desirable "oracle property" for parametric inference, if for large enough data it is nearly as good as the oracle posterior, obtained by assuming unrealistically that the true model is known and only the true model is used. We study the oracle properties in a very general context of quasi-posterior, which can accommodate non-regular models with cubic root asymptotics and partial identification. Our approach for proving the oracle properties is based on a unified treatment that bounds the posterior probability of model mis-selection. This theoretical framework can be of interest to Bayesian statisticians who would like to theoretically justify their new model selection or model averaging methods in addition to empirical results. Furthermore, for non-regular models, we obtain nontrivial conclusions on the choice of prior penalty on model complexity, the temperature parameter of the quasi-posterior, and the advantage of BMA over BMS.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)