Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Metastability in a condensing zero-range process in the thermodynamic limit (1507.03797v2)

Published 14 Jul 2015 in math.PR, cond-mat.stat-mech, math-ph, and math.MP

Abstract: Zero-range processes with decreasing jump rates are known to exhibit condensation, where a finite fraction of all particles concentrates on a single lattice site when the total density exceeds a critical value. We study such a process on a one-dimensional lattice with periodic boundary conditions in the thermodynamic limit with fixed, super-critical particle density. We show that the process exhibits metastability with respect to the condensate location, i.e. the suitably accelerated process of the rescaled location converges to a limiting Markov process on the unit torus. This process has stationary, independent increments and the rates are characterized by the scaling limit of capacities of a single random walker on the lattice. Our result extends previous work for fixed lattices and diverging density in [J. Beltran, C. Landim, Probab. Theory Related Fields, 152(3-4):781-807, 2012], and we follow the martingale approach developed there and in subsequent publications. Besides additional technical difficulties in estimating error bounds for transition rates, the thermodynamic limit requires new estimates for equilibration towards a suitably defined distribution in metastable wells, corresponding to a typical set of configurations with a particular condensate location. The total exit rates from individual wells turn out to diverge in the limit, which requires an intermediate regularization step using the symmetries of the process and the regularity of the limit generator. Another important novel contribution is a coupling construction to provide a uniform bound on the exit rates from metastable wells, which is of a general nature and can be adapted to other models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.