Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Diophantine properties of the zeros of (monic) polynomials the coefficients of which are the zeros of Hermite polynomials (1507.03749v1)

Published 14 Jul 2015 in math-ph and math.MP

Abstract: We introduce a monic polynomial p_N(z) of degree N whose coefficients are the zeros of the N-th degree Hermite polynomial. Note that there are N! such different polynomials p_N(z), depending on the ordering assignment of the N zeros of the Hermite polynomial of order N. We construct two NxN matrices M_1 and M_2 defined in terms of the N zeros of the polynomial p_N(z). We prove that the eigenvalues of M_1 and M_2 are the first N integers respectively the first N squared-integers, a remarkable isospectral and Diophantine property. The technique whereby these findings are demonstrated can be extended to other named polynomials.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.