Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

A Combinatorial Bound for Beacon-based Routing in Orthogonal Polygons (1507.03509v1)

Published 13 Jul 2015 in cs.CG

Abstract: Beacon attraction is a movement system whereby a robot (modeled as a point in 2D) moves in a free space so as to always locally minimize its Euclidean distance to an activated beacon (which is also a point). This results in the robot moving directly towards the beacon when it can, and otherwise sliding along the edge of an obstacle. When a robot can reach the activated beacon by this method, we say that the beacon attracts the robot. A beacon routing from $p$ to $q$ is a sequence $b_1, b_2,$ ..., $b_{k}$ of beacons such that activating the beacons in order will attract a robot from $p$ to $b_1$ to $b_2$ ... to $b_{k}$ to $q$, where $q$ is considered to be a beacon. A routing set of beacons is a set $B$ of beacons such that any two points $p, q$ in the free space have a beacon routing with the intermediate beacons $b_1, b_2,$ ..., $b_{k}$ all chosen from $B$. Here we address the question of "how large must such a $B$ be?" in orthogonal polygons, and show that the answer is "sometimes as large as $[(n-4)/3]$, but never larger."

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)