Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points (1507.02024v2)

Published 8 Jul 2015 in cond-mat.str-el and cond-mat.other

Abstract: We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The hidden symmetry has an antiunitary operator with its square being $-1$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.