Delay induced Turing-like waves for one species reaction-diffusion model on a network (1507.00976v1)
Abstract: A one species time-delay reaction-diffusion system defined on a complex networks is studied. Travelling waves are predicted to occur as follows a symmetry breaking instability of an homogenous stationary stable solution, subject to an external non homogenous perturbation. These are generalized Turing-like waves that materialize in a single species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time delayed differential equation. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz networks and with the inclusion of the delay.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.