Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Convergence of Marked Point Processes of Excesses for Dynamical Systems (1507.00599v2)

Published 2 Jul 2015 in math.DS, math-ph, math.MP, and math.PR

Abstract: We consider stochastic processes arising from dynamical systems simply by evaluating an observable function along the orbits of the system and study marked point processes associated to extremal observations of such time series corresponding to exceedances of high thresholds. Each exceedance is marked by a quantity intended to measure the severity of the exceedance. In particular, we consider marked point processes measuring the aggregate damage by adding all the excesses over the threshold that mark each exceedance (AOT) or simply by adding the largest excesses in a cluster of exceedances (POT). We provide conditions to prove the convergence of such marked point processes to a compound Poisson process, for whose multiplicity distribution we give an explicit formula. These conditions are shown to follow from a strong form of decay of correlations of the system. Moreover, we prove that the convergence of the marked point processes for a `nice' first return induced map can be carried to the original system. The systems considered include non-uniformly expanding maps (in one or higher dimensions), maps with intermittent fixed points or non-recurrent critical points. For a general class of examples, the compound Poisson limit process is computed explicitly and, in particular, in the POT case we obtain a generalised Pareto multiplicity distribution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.