Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Mean-field behavior for nearest-neighbor percolation in $d>10$ (1506.07977v2)

Published 26 Jun 2015 in math.PR, math-ph, and math.MP

Abstract: We prove that nearest-neighbor percolation in dimensions $d\geq 11$ displays mean-field behavior by proving that the infrared bound holds, in turn implying the finiteness of the percolation triangle diagram. The finiteness of the triangle implies the existence and mean-field values of various critical exponents, such as $\gamma=1, \beta=1, \delta=2$. We also prove sharp $x$-space asymptotics for the two-point function and the existence of various arm exponents. Such results had previously been obtained in unpublished work by Hara and Slade for nearest-neighbor percolation in dimension $d\geq 19$, so that we bring the dimension above which mean-field behavior is rigorously proved down from $19$ to $11$. Our results also imply sharp bounds on the critical value of nearest-neighbor percolation on $\mathbb{Z}d$, which are provably at most $1.306\%$ off in $d=11$. We make use of the general method analyzed in the accompanying paper "Generalized approach to the non-backtracking lace expansion" by Fitzner and van der Hofstad, which proposes to use a lace expansion perturbing around non-backtracking random walk. This proof is {\em computer-assisted}, relying on (1) rigorous numerical upper bounds on various simple random walk integrals as proved by Hara and Slade (1992) and (2) a verification that the derived numerical conditions hold true. These two ingredients are implemented in two Mathematica notebooks that can be downloaded from the website of the first author. The main steps of this paper are (a) to derive a non-backtracking lace expansion for the percolation two-point function; (b) to bound the non-backtracking lace expansion coefficients, thus showing that the general methodology applies, and (c) to describe the numerical bounds on the coefficients. In the appendix of this extended version, we give additional details about the bounds that are not given in the article version.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.