Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio (1506.06180v1)

Published 19 Jun 2015 in q-fin.CP

Abstract: We study the finite horizon Merton portfolio optimization problem in a general local-stochastic volatility setting. Using model coefficient expansion techniques, we derive approximations for the both the value function and the optimal investment strategy. We also analyze the `implied Sharpe ratio' and derive a series approximation for this quantity. The zeroth-order approximation of the value function and optimal investment strategy correspond to those obtained by Merton (1969) when the risky asset follows a geometric Brownian motion. The first-order correction of the value function can, for general utility functions, be expressed as a differential operator acting on the zeroth-order term. For power utility functions, higher order terms can also be computed as a differential operator acting on the zeroth-order term. We give a rigorous accuracy bound for the higher order approximations in this case in pure stochastic volatility models. A number of examples are provided in order to demonstrate numerically the accuracy of our approximations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.