Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

No-gaps delocalization for general random matrices (1506.04012v1)

Published 12 Jun 2015 in math.PR

Abstract: We prove that with high probability, every eigenvector of a random matrix is delocalized in the sense that any subset of its coordinates carries a non-negligible portion of its $\ell_2$ norm. Our results pertain to a wide class of random matrices, including matrices with independent entries, symmetric and skew-symmetric matrices, as well as some other naturally arising ensembles. The matrices can be real and complex; in the latter case we assume that the real and imaginary parts of the entries are independent.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube