Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Implementation of Training Convolutional Neural Networks (1506.01195v2)

Published 3 Jun 2015 in cs.CV, cs.LG, and cs.NE

Abstract: Deep learning refers to the shining branch of machine learning that is based on learning levels of representations. Convolutional Neural Networks (CNN) is one kind of deep neural network. It can study concurrently. In this article, we gave a detailed analysis of the process of CNN algorithm both the forward process and back propagation. Then we applied the particular convolutional neural network to implement the typical face recognition problem by java. Then, a parallel strategy was proposed in section4. In addition, by measuring the actual time of forward and backward computing, we analysed the maximal speed up and parallel efficiency theoretically.

Citations (125)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube