Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compactness of conformal metrics with constant $Q$-curvature. I (1506.00739v3)

Published 2 Jun 2015 in math.AP and math.DG

Abstract: We study compactness for nonnegative solutions of the fourth order constant $Q$-curvature equations on smooth compact Riemannian manifolds of dimension $\ge 5$. If the $Q$-curvature equals $-1$, we prove that all solutions are universally bounded. If the $Q$-curvature is $1$, assuming that Paneitz operator's kernel is trivial and its Green function is positive, we establish universal energy bounds on manifolds which are either locally conformally flat (LCF) or of dimension $\le 9$. Moreover, assuming in addition that a positive mass type theorem holds for the Paneitz operator, we prove compactness in $C4$. Positive mass type theorems have been verified recently on LCF manifolds or manifolds of dimension $\le 7$, when the Yamabe invariant is positive. We also prove that, for dimension $\ge 8$, the Weyl tensor has to vanish at possible blow up points of a sequence of blowing up solutions. This implies the compactness result in dimension $\ge 8$ when the Weyl tensor does not vanish anywhere. To overcome difficulties stemming from fourth order elliptic equations, we develop a blow up analysis procedure via integral equations.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)