Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Integrable discretization of the vector/matrix nonlinear Schrödinger equation and the associated Yang-Baxter map (1505.07924v5)

Published 29 May 2015 in nlin.SI, math-ph, math.MP, and nlin.PS

Abstract: The action of a B\"acklund-Darboux transformation on a spectral problem associated with a known integrable system can define a new discrete spectral problem. In this paper, we interpret a slightly generalized version of the binary B\"acklund-Darboux (or Zakharov-Shabat dressing) transformation for the nonlinear Schr\"odinger (NLS) hierarchy as a discrete spectral problem, wherein the two intermediate potentials appearing in the Darboux matrix are considered as a pair of new dependent variables. Then, we associate the discrete spectral problem with a suitable isospectral time-evolution equation, which forms the Lax-pair representation for a space-discrete NLS system. This formulation is valid for the most general case where the two dependent variables take values in (rectangular) matrices. In contrast to the matrix generalization of the Ablowitz-Ladik lattice, our discretization has a rational nonlinearity and admits a Hermitian conjugation reduction between the two dependent variables. Thus, a new proper space-discretization of the vector/matrix NLS equation is obtained; by changing the time part of the Lax pair, we also obtain an integrable space-discretization of the vector/matrix modified KdV (mKdV) equation. Because B\"acklund-Darboux transformations are permutable, we can increase the number of discrete independent variables in a multi-dimensionally consistent way. By solving the consistency condition on the two-dimensional lattice, we obtain a Yang-Baxter map of the NLS type, which can be considered as a fully discrete analog of the principal chiral model for projection matrices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. F. Calogero: Bäcklund transformations and functional relation for solutions of nonlinear partial differential equations solvable via the inverse scattering method, Lett. Nuovo Cimento 14 (1975) 537–543.
  2. F. Calogero and A. Degasperis: Nonlinear evolution equations solvable by the inverse spectral transform. I, Nuovo Cimento B 32 (1976) 201–242.
  3. S.-C. Chiu and J. F. Ladik: Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique, J. Math. Phys. 18 (1977) 690–700.
  4. R. Hirota: Nonlinear partial difference equations III; Discrete sine-Gordon equation, J. Phys. Soc. Jpn. 43 (1977) 2079–2086.
  5. S. J. Orfanidis: Discrete sine-Gordon equations, Phys. Rev. D 18 (1978) 3822–3827.
  6. S. J. Orfanidis: Sine-Gordon equation and nonlinear σ𝜎\sigmaitalic_σ model on a lattice, Phys. Rev. D 18 (1978) 3828–3832.
  7. T. Miwa: On Hirota’s difference equations, Proc. Japan Acad. A 58 (1982) 9–12.
  8. P. D. Lax: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467–490.
  9. V. E. Zakharov and A. B. Shabat: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974) 226–235.
  10. D. V. Chudnovsky and G. V. Chudnovsky: Bäcklund transformation as a method of decomposition and reproduction of two-dimensional nonlinear systems, Phys. Lett. A 87 (1982) 325–329.
  11. D. V. Chudnovsky and G. V. Chudnovsky: Bäcklund transformations and lattice systems with G-gauge symmetries, Phys. Lett. A 89 (1982) 117–122.
  12. B. G. Konopelchenko: The group structure of Bäcklund transformations, Phys. Lett. A 74 (1979) 189–192.
  13. B. G. Konopelchenko: Transformation properties of the integrable evolution equations, Phys. Lett. B 100 (1981) 254–260.
  14. H.-H. Chen: General derivation of Bäcklund transformations from inverse scattering problems, Phys. Rev. Lett. 33 (1974) 925–928.
  15. S. V. Manakov: On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys.–JETP 38 (1974) 248–253.
  16. M. J. Ablowitz and J. F. Ladik: Nonlinear differential–difference equations and Fourier analysis, J. Math. Phys. 17 (1976) 1011–1018.
  17. M. J. Ablowitz and J. F. Ladik: A nonlinear difference scheme and inverse scattering, Stud. Appl. Math. 55 (1976) 213–229.
  18. V. S. Gerdzhikov and M. I. Ivanov: Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form, Theor. Math. Phys. 52 (1982) 676–685.
  19. T. Tsuchida: Integrable discretizations of derivative nonlinear Schrödinger equations, J. Phys. A: Math. Gen. 35 (2002) 7827–7847.
  20. A. Dimakis and F. Müller-Hoissen: Solutions of matrix NLS systems and their discretizations: a unified treatment, Inverse Probl. 26 (2010) 095007.
  21. T. Tsuchida: On a new integrable discretization of the derivative nonlinear Schrödinger (Chen–Lee–Liu)Chen–Lee–Liu(\mbox{Chen--Lee--Liu})( Chen–Lee–Liu ) equation, arXiv:1501.01956 [nlin.SI] (2015).
  22. N. Yajima and M. Oikawa: A class of exactly solvable nonlinear evolution equations, Prog. Theor. Phys. 54 (1975) 1576–1577.
  23. V. G. Makhan’kov and O. K. Pashaev: Nonlinear Schrödinger equation with noncompact isogroup, Theor. Math. Phys. 53 (1982) 979–987.
  24. P. P. Kulish and E. K. Sklyanin: O⁢(N)O𝑁\mathrm{O}(N)roman_O ( italic_N )-invariant nonlinear Schrödinger equation—A new completely integrable system, Phys. Lett. A 84 (1981) 349–352.
  25. A. P. Fordy and P. P. Kulish: Nonlinear Schrödinger equations and simple Lie algebras, Commun. Math. Phys. 89 (1983) 427–443.
  26. S. I. Svinolupov: Generalized Schrödinger equations and Jordan pairs, Commun. Math. Phys. 143 (1992) 559–575.
  27. C. Athorne and A. Fordy: Generalised KdV and MKdV equations associated with symmetric spaces, J. Phys. A: Math. Gen. 20 (1987) 1377–1386.
  28. S. I. Svinolupov: Jordan algebras and integrable systems, Funct. Anal. Appl. 27 (1993) 257–265.
  29. Y. B. Suris and A. P. Veselov: Lax matrices for Yang–Baxter maps, J. Nonlinear Math. Phys. 10 Suppl. 2 (2003) 223–230.
  30. A. P. Veselov: Yang–Baxter maps and integrable dynamics, Phys. Lett. A 314 (2003) 214–221.
  31. V. Caudrelier and Q. C. Zhang: Yang–Baxter and reflection maps from vector solitons with a boundary, Nonlinearity 27 (2014) 1081–1103.
  32. V. E. Zakharov and A. V. Mikhaĭlov: Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method, Sov. Phys. JETP 47 (1978) 1017–1027.
  33. K. Pohlmeyer and K.-H. Rehren: Reduction of the two-dimensional O⁢(n)normal-O𝑛\mathrm{O}(n)roman_O ( italic_n ) nonlinear σ𝜎\sigmaitalic_σ-model, J. Math. Phys. 20 (1979) 2628–2632.
  34. H. Eichenherr and K. Pohlmeyer: Lax pairs for certain generalizations of the sine-Gordon equation, Phys. Lett. B 89 (1979) 76–78.
  35. V. E. Zakharov: The inverse scattering method, “Solitons” edited by R. K. Bullough and P. J. Caudrey (Topics in Current Physics 17, Springer, Berlin, 1980) pp. 243–285.
  36. B. G. Konopelchenko: On the structure of integrable evolution equations, Phys. Lett. A 79 (1980) 39–43.
  37. R. Hirota: Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14 (1973) 805–809.
  38. M. J. Ablowitz: Lectures on the inverse scattering transform, Stud. Appl. Math. 58 (1978) 17–94.
  39. A. C. Newell: The general structure of integrable evolution equations, Proc. R. Soc. Lond. A 365 (1979) 283–311.
  40. V. E. Zakharov and E. I. Schulman: To the integrability of the system of two coupled nonlinear Schrödinger equations, Physica D 4 (1982) 270–274.
  41. T. Tsuchida: Exact solutions of multicomponent nonlinear Schrödinger equations under general plane-wave boundary conditions, arXiv:1308.6623 [nlin.SI] (2013).
  42. N. Sasa and J. Satsuma: New-type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Jpn. 60 (1991) 409–417.
  43. V. E. Zakharov and A. B. Shabat: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II, Funct. Anal. Appl. 13 (1979) 166–174.
  44. M. A. Sall’: Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type, Theor. Math. Phys. 53 (1982) 1092–1099.
  45. F. Kako and N. Mugibayashi: Complete integrability of general nonlinear differential-difference equations solvable by the inverse method. II, Prog. Theor. Phys. 61 (1979) 776–790.
  46. A. G. Izergin and V. E. Korepin: A lattice model related to the nonlinear Schrödinger equation, Sov. Phys. Dokl. 26 (1981) 653–654.
  47. E. K. Sklyanin: Some algebraic structures connected with the Yang–Baxter equation, Funct. Anal. Appl. 16 (1982) 263–270.
  48. Y. Ishimori: An integrable classical spin chain, J. Phys. Soc. Jpn. 51 (1982) 3417–3418.
  49. F. D. M. Haldane: Excitation spectrum of a generalised Heisenberg ferromagnetic spin chain with arbitrary spin, J. Phys. C: Solid State Phys. 15 (1982) L1309–1313.
  50. G. M. Pritula and V. E. Vekslerchik: Toda–Heisenberg chain: interacting σ𝜎\sigmaitalic_σ-fields in two dimensions, J. Nonlinear Math. Phys. 18 (2011) 443–459.
  51. V. E. Adler and A. B. Shabat: On the one class of hyperbolic systems, SIGMA 2 (2006) 093.
  52. T. Tsuchida: A refined and unified version of the inverse scattering method for the Ablowitz–Ladik lattice and derivative NLS lattices, arXiv:1206.3210 [nlin.SI] (2012).
  53. T. Tsuchida: Comment on “Discretisations of constrained KP hierarchies”, arXiv:1406.7324 [nlin.SI] (2014).
  54. R. Hirota: Exact N𝑁Nitalic_N-soliton solution of nonlinear lumped self-dual network equations, J. Phys. Soc. Jpn. 35 (1973) 289–294.
  55. M. J. Ablowitz and J. F. Ladik: On the solution of a class of nonlinear partial difference equations, Stud. Appl. Math. 57 (1977) 1–12.
  56. T. Tsuchida: A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion, J. Phys. A: Math. Theor. 43 (2010) 415202.
  57. T. E. Kouloukas and V. G. Papageorgiou: Yang–Baxter maps with first-degree-polynomial 2×2222\times 22 × 2 Lax matrices, J. Phys. A: Math. Theor. 42 (2009) 404012.
  58. T. E. Kouloukas and V. G. Papageorgiou: Poisson Yang–Baxter maps with binomial Lax matrices, J. Math. Phys. 52 (2011) 073502.
  59. C.-L. Terng and K. Uhlenbeck: Bäcklund transformations and loop group actions, Comm. Pure Appl. Math. 53 (2000) 1–75.
  60. S. C. Anco and T. Wolf: Some symmetry classifications of hyperbolic vector evolution equations, arXiv:nlin/0412015 [nlin.SI] (2004).
  61. M. Y. Balakhnev: A class of integrable evolutionary vector equations, Theor. Math. Phys. 142 (2005) 8–14.
  62. M. J. Balakhnev and A. G. Meshkov: On a classification of integrable vectorial evolutionary equations, J. Nonlinear Math. Phys. 15 (2008) 212–226.
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets