Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Hankel low-rank matrix completion: a convex relaxation (1505.07766v2)

Published 28 May 2015 in math.OC, cs.IT, math.IT, and math.NA

Abstract: The completion of matrices with missing values under the rank constraint is a non-convex optimization problem. A popular convex relaxation is based on minimization of the nuclear norm (sum of singular values) of the matrix. For this relaxation, an important question is whether the two optimization problems lead to the same solution. This question was addressed in the literature mostly in the case of random positions of missing elements and random known elements. In this contribution, we analyze the case of structured matrices with fixed pattern of missing values, in particular, the case of Hankel and quasi-Hankel matrix completion, which appears as a subproblem in the computation of symmetric tensor canonical polyadic decomposition. We extend existing results on completion of rank-one real Hankel matrices to completion of rank-r complex Hankel and quasi-Hankel matrices.

Citations (5)

Summary

We haven't generated a summary for this paper yet.