Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact matrix completion based on low rank Hankel structure in the Fourier domain (1910.02576v1)

Published 7 Oct 2019 in cs.IT, math.IT, and math.OC

Abstract: Matrix completion is about recovering a matrix from its partial revealed entries, and it can often be achieved by exploiting the inherent simplicity or low dimensional structure of the target matrix. For instance, a typical notion of matrix simplicity is low rank. In this paper we study matrix completion based on another low dimensional structure, namely the low rank Hankel structure in the Fourier domain. It is shown that matrices with this structure can be exactly recovered by solving a convex optimization program provided the sampling complexity is nearly optimal. Empirical results are also presented to justify the effectiveness of the convex method.

Citations (6)

Summary

We haven't generated a summary for this paper yet.