Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Cross-Domain Word Representation Learning (1505.07184v1)

Published 27 May 2015 in cs.CL

Abstract: Meaning of a word varies from one domain to another. Despite this important domain dependence in word semantics, existing word representation learning methods are bound to a single domain. Given a pair of \emph{source}-\emph{target} domains, we propose an unsupervised method for learning domain-specific word representations that accurately capture the domain-specific aspects of word semantics. First, we select a subset of frequent words that occur in both domains as \emph{pivots}. Next, we optimize an objective function that enforces two constraints: (a) for both source and target domain documents, pivots that appear in a document must accurately predict the co-occurring non-pivots, and (b) word representations learnt for pivots must be similar in the two domains. Moreover, we propose a method to perform domain adaptation using the learnt word representations. Our proposed method significantly outperforms competitive baselines including the state-of-the-art domain-insensitive word representations, and reports best sentiment classification accuracies for all domain-pairs in a benchmark dataset.

Citations (73)

Summary

We haven't generated a summary for this paper yet.