Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing the Single-Crossing Property on Lines and Trees to Intermediate Preferences on Median Graphs (1505.06982v1)

Published 25 May 2015 in cs.GT and math.CO

Abstract: Demange (2012) generalized the classical single-crossing property to the intermediate property on median graphs and proved that the representative voter theorem still holds for this more general framework. We complement her result with proving that the linear orders of any profile which is intermediate on a median graph form a Condorcet domain. We prove that for any median graph there exists a profile that is intermediate with respect to that graph and that one may need at least as many alternatives as vertices to construct such a profile. We provide a polynomial-time algorithm to recognize whether or not a given profile is intermediate with respect to some median graph. Finally, we show that finding winners for the Chamberlin-Courant rule is polynomial-time solvable for profiles that are single-crossing on a tree.

Citations (17)

Summary

We haven't generated a summary for this paper yet.