Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Anomalous Crystal Symmetry Fractionalization on the Surface of Topological Crystalline Insulators (1505.06201v2)

Published 22 May 2015 in cond-mat.str-el and cond-mat.mes-hall

Abstract: The surface of a three-dimensional topological electron system often hosts symmetry-protected gapless surface states. With the effect of electron interactions, these surface states can be gapped out without symmetry breaking by a surface topological order, in which the anyon excitations carry anomalous symmetry fractionalization that cannot be realized in a genuine two-dimensional system. We show that for a mirror-symmetry-protected topological crystalline insulator with mirror Chern number $n=4$, its surface can be gapped out by an anomalous $\mathbb Z_2$ topological order, where all anyons carry mirror-symmetry fractionalization $M2=-1$. The identification of such anomalous crystalline symmetry fractionalization implies that in a two-dimensional $\mathbb Z_2$ spin liquid the vison excitation cannot carry $M2=-1$ if the spinon carries $M2=-1$ or a half-integer spin.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)