Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypothesis testing for markovian models with random time observations (1505.06101v1)

Published 22 May 2015 in math.ST and stat.TH

Abstract: The aim of this paper is to propose a methodology for testing general hypothesis in a Markovian setting with random sampling. A discrete Markov chain X is observed at random time intervals $\tau$ k, assumed to be iid with unknown distribution $\mu$. Two test procedures are investigated. The first one is devoted to testing if the transition matrix P of the Markov chain X satisfies specific affine constraints, covering a wide range of situations such as symmetry or sparsity. The second procedure is a goodness-of-fit test on the distribution $\mu$, which reveals to be consistent under mild assumptions even though the time gaps are not observed. The theoretical results are supported by a Monte Carlo simulation study to show the performance and robustness of the proposed methodologies on specific numerical examples.

Summary

We haven't generated a summary for this paper yet.