Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Markov Chains without Hitting (1902.01999v1)

Published 6 Feb 2019 in math.ST, cs.DS, cs.LG, stat.ML, and stat.TH

Abstract: We study the problem of identity testing of markov chains. In this setting, we are given access to a single trajectory from a markov chain with unknown transition matrix $Q$ and the goal is to determine whether $Q = P$ for some known matrix $P$ or $\text{Dist}(P, Q) \geq \epsilon$ where $\text{Dist}$ is suitably defined. In recent work by Daskalakis, Dikkala and Gravin, 2018, it was shown that it is possible to distinguish between the two cases provided the length of the observed trajectory is at least super-linear in the hitting time of $P$ which may be arbitrarily large. In this paper, we propose an algorithm that avoids this dependence on hitting time thus enabling efficient testing of markov chains even in cases where it is infeasible to observe every state in the chain. Our algorithm is based on combining classical ideas from approximation algorithms with techniques for the spectral analysis of markov chains.

Citations (2)

Summary

We haven't generated a summary for this paper yet.