Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Interactive Scalar Quantization for Distributed Resource Allocation (1505.04202v3)

Published 15 May 2015 in cs.IT and math.IT

Abstract: In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay trade-offs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.