Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multiscale numerical schemes for kinetic equations in the anomalous diffusion limit (1505.03250v1)

Published 13 May 2015 in math.NA

Abstract: We construct numerical schemes to solve kinetic equations with anomalous diffusion scaling. When the equilibrium is heavy-tailed or when the collision frequency degenerates for small velocities, an appropriate scaling should be made and the limit model is the so-called anomalous or fractional diffusion model. Our first scheme is based on a suitable micro-macro decomposition of the distribution function whereas our second scheme relies on a Duhamel formulation of the kinetic equation. Both are \emph{Asymptotic Preserving} (AP): they are consistent with the kinetic equation for all fixed value of the scaling parameter $\varepsilon >0$ and degenerate into a consistent scheme solving the asymptotic model when $\varepsilon$ tends to $0$. The second scheme enjoys the stronger property of being uniformly accurate (UA) with respect to $\varepsilon$. The usual AP schemes known for the classical diffusion limit cannot be directly applied to the context of anomalous diffusion scaling, since they are not able to capture the important effects of large and small velocities. We present numerical tests to highlight the efficiency of our schemes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.