Dynamical correlation functions for products of random matrices (1505.02511v3)
Abstract: We introduce and study a family of random processes with a discrete time related to products of random matrices. Such processes are formed by singular values of random matrix products, and the number of factors in a random matrix product plays a role of a discrete time. We consider in detail the case when the (squared) singular values of the initial random matrix form a polynomial ensemble, and the initial random matrix is multiplied by standard complex Gaussian matrices. In this case we show that the random process is a discrete-time determinantal point process. For three special cases (the case when the initial random matrix is a standard complex Gaussian matrix, the case when it is a truncated unitary matrix, or the case when it is a standard complex Gaussian matrix with a source) we compute the dynamical correlations functions explicitly, and find the hard edge scaling limits of the correlation kernels. The proofs rely on the Eynard-Mehta theorem, and on contour integral representations for the correlation kernels suitable for an asymptotic analysis.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.