Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Dynamical correlation functions for products of random matrices (1505.02511v3)

Published 11 May 2015 in math-ph and math.MP

Abstract: We introduce and study a family of random processes with a discrete time related to products of random matrices. Such processes are formed by singular values of random matrix products, and the number of factors in a random matrix product plays a role of a discrete time. We consider in detail the case when the (squared) singular values of the initial random matrix form a polynomial ensemble, and the initial random matrix is multiplied by standard complex Gaussian matrices. In this case we show that the random process is a discrete-time determinantal point process. For three special cases (the case when the initial random matrix is a standard complex Gaussian matrix, the case when it is a truncated unitary matrix, or the case when it is a standard complex Gaussian matrix with a source) we compute the dynamical correlations functions explicitly, and find the hard edge scaling limits of the correlation kernels. The proofs rely on the Eynard-Mehta theorem, and on contour integral representations for the correlation kernels suitable for an asymptotic analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)