Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parametric Realization of the Lorentz Transformation Group in Pseudo-Euclidean Spaces (1505.02301v1)

Published 9 May 2015 in math-ph and math.MP

Abstract: The Lorentz transformation group $SO(m,n)$ is a group of Lorentz transformations of order $(m,n)$, that is, a group of special linear transformations in a pseudo-Euclidean space of signature $(m,n)$ that leave the pseudo-Euclidean inner product invariant. A parametrization of $SO(m,n)$ is presented, giving rise to the composition law of Lorentz transformations of order $(m,n)$ in terms of parameter composition. The parameter composition, in turn, gives rise to a novel group-like structure called a bi-gyrogroup. Bi-gyrogroups form a natural generalization of gyrogroups where the latter form a natural generalization of groups. Like the abstract gyrogroup, the abstract bi-gyrogroup can play a universal computational role which extends far beyond the domain of pseudo-Euclidean spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.