Hilbert Series for Theories with Aharony Duals (1505.02160v1)
Abstract: The algebraic structure of moduli spaces of 3d N=2 supersymmetric gauge theories is studied by computing the Hilbert series which is a generating function that counts gauge invariant operators in the chiral ring. These U(N_c) theories with N_f flavors have Aharony duals and their moduli spaces receive contributions from both mesonic and monopole operators. In order to compute the Hilbert series, recently developed techniques for Coulomb branch Hilbert series in 3d N=4 are extended to 3d N=2. The Hilbert series computation leads to a general expression of the algebraic variety which represents the moduli space of the U(N_c) theory with N_f flavors and its Aharony dual theory. A detailed analysis of the moduli space is given, including an analysis of the various components of the moduli space.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.