Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Non-intersecting Brownian bridges and the Laguerre Orthogonal Ensemble (1505.01708v2)

Published 7 May 2015 in math.PR, math-ph, and math.MP

Abstract: We show that the squared maximal height of the top path among $N$ non-intersecting Brownian bridges starting and ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This result can be thought of as a discrete version of K. Johansson's result that the supremum of the Airy$_2$ process minus a parabola has the Tracy-Widom GOE distribution, and as such it provides an explanation for how this distribution arises in models belonging to the KPZ universality class with flat initial data. The result can be recast in terms of the probability that the top curve of the stationary Dyson Brownian motion hits an hyperbolic cosine barrier.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.