Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Linear Instability and Stability of the Rayleigh-Taylor Problem in Magnetohydrodynamics (1504.06912v1)

Published 27 Apr 2015 in math-ph, math.AP, and math.MP

Abstract: We investigate the stabilizing effects of the magnetic fields in the linearized magnetic Rayleigh-Taylor (RT) problem of a nonhomogeneous incompressible viscous magnetohydrodynamic fluid of zero resistivity in the presence of a uniform gravitational field in a three-dimensional bounded domain, in which the velocity of the fluid is non-slip on the boundary. By adapting a modified variational method and careful deriving \emph{a priori} estimates, we establish a criterion for the instability/stability of the linearized problem around a magnetic RT equilibrium state. In the criterion, we find a new phenomenon that a sufficiently strong horizontal magnetic field has the same stabilizing effect as that of the vertical magnetic field on growth of the magnetic RT instability. In addition, we further study the corresponding compressible case, i.e., the Parker (or magnetic buoyancy) problem, for which the strength of a horizontal magnetic field decreases with height, and also show the stabilizing effect of a sufficiently large magnetic field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)