On Linear Instability and Stability of the Rayleigh-Taylor Problem in Magnetohydrodynamics (1504.06912v1)
Abstract: We investigate the stabilizing effects of the magnetic fields in the linearized magnetic Rayleigh-Taylor (RT) problem of a nonhomogeneous incompressible viscous magnetohydrodynamic fluid of zero resistivity in the presence of a uniform gravitational field in a three-dimensional bounded domain, in which the velocity of the fluid is non-slip on the boundary. By adapting a modified variational method and careful deriving \emph{a priori} estimates, we establish a criterion for the instability/stability of the linearized problem around a magnetic RT equilibrium state. In the criterion, we find a new phenomenon that a sufficiently strong horizontal magnetic field has the same stabilizing effect as that of the vertical magnetic field on growth of the magnetic RT instability. In addition, we further study the corresponding compressible case, i.e., the Parker (or magnetic buoyancy) problem, for which the strength of a horizontal magnetic field decreases with height, and also show the stabilizing effect of a sufficiently large magnetic field.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.