Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Converses for distributed estimation via strong data processing inequalities (1504.06028v1)

Published 23 Apr 2015 in cs.IT and math.IT

Abstract: We consider the problem of distributed estimation, where local processors observe independent samples conditioned on a common random parameter of interest, map the observations to a finite number of bits, and send these bits to a remote estimator over independent noisy channels. We derive converse results for this problem, such as lower bounds on Bayes risk. The main technical tools include a lower bound on the Bayes risk via mutual information and small ball probability, as well as strong data processing inequalities for the relative entropy. Our results can recover and improve some existing results on distributed estimation with noiseless channels, and also capture the effect of noisy channels on the estimation performance.

Citations (19)

Summary

We haven't generated a summary for this paper yet.