Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-Theoretic Lower Bounds on Bayes Risk in Decentralized Estimation (1607.00550v1)

Published 2 Jul 2016 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We derive lower bounds on the Bayes risk in decentralized estimation, where the estimator does not have direct access to the random samples generated conditionally on the random parameter of interest, but only to the data received from local processors that observe the samples. The received data are subject to communication constraints, due to quantization and the noise in the communication channels from the processors to the estimator. We first derive general lower bounds on the Bayes risk using information-theoretic quantities, such as mutual information, information density, small ball probability, and differential entropy. We then apply these lower bounds to the decentralized case, using strong data processing inequalities to quantify the contraction of information due to communication constraints. We treat the cases of a single processor and of multiple processors, where the samples observed by different processors may be conditionally dependent given the parameter, for noninteractive and interactive communication protocols. Our results recover and improve recent lower bounds on the Bayes risk and the minimax risk for certain decentralized estimation problems, where previously only conditionally independent sample sets and noiseless channels have been considered. Moreover, our results provide a general way to quantify the degradation of estimation performance caused by distributing resources to multiple processors, which is only discussed for specific examples in existing works.

Citations (53)

Summary

We haven't generated a summary for this paper yet.