Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Fast Sparsely Synchronized Brain Rhythms in A Scale-Free Neural Network (1504.03063v1)

Published 13 Apr 2015 in q-bio.NC and physics.bio-ph

Abstract: We consider a directed Barab\'{a}si-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees, and study emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast spiking Izhikevich interneurons. For a study on the fast sparsely synchronized rhythms, we fix $J$ (synaptic inhibition strength) at a sufficiently large value, and investigate the population states by increasing $D$ (noise intensity). For small $D$, full synchronization with the same population-rhythm frequency $f_p$ and mean firing rate (MFR) $f_i$ of individual neurons occurs, while for sufficiently large $D$ partial synchronization with $f_p > {\langle f_i \rangle}$ ($\langle f_i \rangle$: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; particularly, the case of $f_p > 4 {\langle f_i \rangle}$ is referred to as sparse synchronization. Only for the partial and sparse synchronization, MFRs and contributions of individual neuronal dynamics to population synchronization change depending on their degrees, unlike the case of full synchronization. Consequently, dynamics of individual neurons reveal the inhomogeneous network structure for the case of partial and sparse synchronization, which is in contrast to the case of statistically homogeneous random graphs and small-world networks. Finally, we investigate the effect of network architecture on sparse synchronization in the following three cases: (1) variation in the degree of symmetric attachment (2) asymmetric preferential attachment of new nodes with different in- and out-degrees (3) preferential attachment between pre-existing nodes (without addition of new nodes). In these three cases, both relation between network topology and sparse synchronization and contributions of individual dynamics to the sparse synchronization are discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.