Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluation Evaluation a Monte Carlo study (1504.00854v1)

Published 3 Apr 2015 in cs.AI, cs.CL, and stat.ML

Abstract: Over the last decade there has been increasing concern about the biases embodied in traditional evaluation methods for Natural Language Processing/Learning, particularly methods borrowed from Information Retrieval. Without knowledge of the Bias and Prevalence of the contingency being tested, or equivalently the expectation due to chance, the simple conditional probabilities Recall, Precision and Accuracy are not meaningful as evaluation measures, either individually or in combinations such as F-factor. The existence of bias in NLP measures leads to the 'improvement' of systems by increasing their bias, such as the practice of improving tagging and parsing scores by using most common value (e.g. water is always a Noun) rather than the attempting to discover the correct one. The measures Cohen Kappa and Powers Informedness are discussed as unbiased alternative to Recall and related to the psychologically significant measure DeltaP. In this paper we will analyze both biased and unbiased measures theoretically, characterizing the precise relationship between all these measures as well as evaluating the evaluation measures themselves empirically using a Monte Carlo simulation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube