Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On factorization invariants and Hilbert functions (1503.08351v4)

Published 28 Mar 2015 in math.AC

Abstract: Nonunique factorization in cancellative commutative semigroups is often studied using combinatorial factorization invariants, which assign to each semigroup element a quantity determined by the factorization structure. For numerical semigroups (additive subsemigroups of the natural numbers), several factorization invariants are known to admit predictable behavior for sufficiently large semigroup elements. In particular, the catenary degree and delta set invariants are both eventually periodic, and the omega-primality invariant is eventually quasilinear. In this paper, we demonstrate how each of these invariants is determined by Hilbert functions of graded modules. In doing so, we extend each of the aforementioned eventual behavior results to finitely generated semigroups, and provide a new framework through which to study factorization structures in this setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)