Black-Scholes in a CEV random environment (1503.08082v3)
Abstract: Classical (It^o diffusions) stochastic volatility models are not able to capture the steepness of small-maturity implied volatility smiles. Jumps, in particular exponential L\'evy and affine models, which exhibit small-maturity exploding smiles, have historically been proposed to remedy this (see \cite{Tank} for an overview), and more recently rough volatility models \cite{AlosLeon, Fukasawa}. We suggest here a different route, randomising the Black-Scholes variance by a CEV-generated distribution, which allows us to modulate the rate of explosion (through the CEV exponent) of the implied volatility for small maturities. The range of rates includes behaviours similar to exponential L\'evy models and fractional stochastic volatility models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.