Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A congruence involving alternating harmonic sums modulo $p^αq^β$ (1503.03154v1)

Published 11 Mar 2015 in math.NT

Abstract: In 2014, Wang and Cai established the following harmonic congruence for any odd prime $p$ and positive integer $r$, \begin{equation*} \sum\limits_{i+j+k=p{r}\atop{i,j,k\in \mathcal{P}{p}}}\frac{1}{ijk}\equiv-2p{r-1}B{p-3} ~(\bmod ~ p{r}), \end{equation*} where $\mathcal{P}{n}$ denote the set of positive integers which are prime to $n$. In this note, we obtain the congruences for distinct odd primes $p,~q$ and positive integers $\alpha,~\beta$, \begin{equation*} \sum\limits{i+j+k=p{\alpha}q{\beta}\atop{i,j,k\in\mathcal{P}_{pq}\atop{i\equiv j\equiv k\equiv 1\pmod{2}}}}\frac{1}{ijk}\equiv\frac{7}{8}(2-q)(1-\frac{1}{q{3}})p{\alpha-1}q{\beta-1}B_{p-3}\pmod{p{\alpha}} \end{equation*} and \begin{equation*} \sum\limits_{i+j+k=p{\alpha}q{\beta}\atop{i,j,k\in \mathcal{P}{pq}}}\frac{(-1){i}}{ijk} \equiv \frac{1}{2}(q-2)(1-\frac{1}{q{3}})p{\alpha-1}q{\beta-1}B{p-3}\pmod{p{\alpha}}. \end{equation*} Finally, we raise a conjecture that for $n>1$ and odd prime power $p{\alpha}||n$, $\alpha\geq1$, \begin{eqnarray} \nonumber \sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}{n}}}\frac{(-1){i}}{ijk} \equiv \prod\limits{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q{3}})\frac{n}{2p}B_{p-3}\pmod{p{\alpha}} \end{eqnarray} and \begin{eqnarray} \nonumber \sum\limits_{i+j+k=n\atop{i,j,k\in\mathcal{P}{n}\atop{i\equiv j\equiv k\equiv 1\pmod{2}}}}\frac{1}{ijk} \equiv \prod\limits{q|n\atop{q\neq p}}(1-\frac{2}{q})(1-\frac{1}{q{3}})(-\frac{7n}{8p})B_{p-3}\pmod{p{\alpha}}. \end{eqnarray}

Summary

We haven't generated a summary for this paper yet.