Maximum mass of a barotropic spherical star (1503.01517v2)
Abstract: The ratio of total mass $M$ to surface radius $R$ of spherical perfect fluid ball has an upper bound, $M/R < B$. Buchdahl obtained $B = 4/9$ under the assumptions; non-increasing mass density in outward direction, and barotropic equation of states. Barraco and Hamity decreased the Buchdahl's bound to a lower value $B = 3/8$ $(< 4/9)$ by adding the dominant energy condition to Buchdahl's assumptions. In this paper, we further decrease the Barraco-Hamity's bound to $B \simeq 0.3636403$ $(< 3/8)$ by adding the subluminal (slower-than-light) condition of sound speed. In our analysis, we solve numerically Tolman-Oppenheimer-Volkoff equations, and the mass-to-radius ratio is maximized by variation of mass, radius and pressure inside the fluid ball as functions of mass density.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.