Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ROSA: Robust sparse adaptive channel estimation in the presence of impulsive noises (1503.01105v1)

Published 3 Mar 2015 in cs.IT and math.IT

Abstract: Based on the assumption of Gaussian noise model, conventional adaptive filtering algorithms for reconstruction sparse channels were proposed to take advantage of channel sparsity due to the fact that broadband wireless channels usually have the sparse nature. However, state-of-the-art algorithms are vulnerable to deteriorate under the assumption of non-Gaussian noise models (e.g., impulsive noise) which often exist in many advanced communications systems. In this paper, we study the problem of RObust Sparse Adaptive channel estimation (ROSA) in the environment of impulsive noises using variable step-size affine projection sign algorithm (VSS-APSA). Specifically, standard VSS-APSA algorithm is briefly reviewed and three sparse VSS-APSA algorithms are proposed to take advantage of channel sparsity with different sparse constraints. To fairly evaluate the performance of these proposed algorithms, alpha-stable noise is considered to approximately model the realistic impulsive noise environments. Simulation results show that the proposed algorithms can achieve better performance than standard VSS-APSA algorithm in different impulsive environments.

Summary

We haven't generated a summary for this paper yet.