Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IMAC: Impulsive-mitigation adaptive sparse channel estimation based on Gaussian-mixture model (1503.00800v1)

Published 3 Mar 2015 in cs.IT and math.IT

Abstract: Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel estimation performance is often deteriorated by unexpected non-Gaussian noises which include conventional Gaussian noises and impulsive interferences. To design stable communication systems, hence, it is urgent to develop advanced channel estimation methods to remove the impulsive interference and to exploit channel sparsity simultaneously. In this paper, robust impulsive-mitigation adaptive sparse channel estimation (IMAC) method is proposed for solving aforementioned technical issues. Specifically, first of all, the non-Gaussian noise model is described by Gaussian mixture model (GMM). Secondly, cost function of reweighted L1-norm penalized least absolute error standard (RL1-LAE) algorithm is constructed. Then, RL1-LAE algorithm is derived for realizing IMAC method. Finally, representative simulation results are provided to corroborate the studies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.