Heisenberg scaling in Gaussian quantum metrology (1502.07654v2)
Abstract: We address the issue of precisely estimating small parameters encoded in a general linear transformation of the modes of a bosonic quantum field. Such Bogoliubov transformations frequently appear in the context of quantum optics. We provide a set of instructions for computing the quantum Fisher information for arbitrary pure initial states. We show that the maximally achievable precision of estimation is inversely proportional to the squared average particle number and that such Heisenberg scaling requires non-classical, but not necessarily entangled states. Our method further allows us to quantify losses in precision arising from being able to monitor only finitely many modes, for which we identify a lower bound.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.