Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cramer-Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters (1502.07523v1)

Published 26 Feb 2015 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: In this paper, we consider signals with a low-rank covariance matrix which reside in a low-dimensional subspace and can be written in terms of a finite (small) number of parameters. Although such signals do not necessarily have a sparse representation in a finite basis, they possess a sparse structure which makes it possible to recover the signal from compressed measurements. We study the statistical performance bound for parameter estimation in the low-rank signal model from compressed measurements. Specifically, we derive the Cramer-Rao bound (CRB) for a generic low-rank model and we show that the number of compressed samples needs to be larger than the number of sources for the existence of an unbiased estimator with finite estimation variance. We further consider the applications to direction-of-arrival (DOA) and spectral estimation which fit into the low-rank signal model. We also investigate the effect of compression on the CRB by considering numerical examples of the DOA estimation scenario, and show how the CRB increases by increasing the compression or equivalently reducing the number of compressed samples.

Citations (16)

Summary

We haven't generated a summary for this paper yet.